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Failure of thermodynamics near a phase transition
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In the vicinity of a first-order phase transition, the equation of state might be different when the extensive
variable is controlled instead of the intensive one, violating the uniqueness of thermodynamics. A sufficient
condition for this nonequivalence to survive at the thermodynamical limit is worked out for classical systems.
If energy consists of a kinetic and a potential part, the microcanonical ensemble does not converge towards the
canonical ensemble when the kinetic heat capacity is larger than the modulus of the negative interaction heat
capacity.
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Phase transitions are universal properties of matter in
teraction. In macroscopic physics, they are anomalies in
system equation of state~EoS! and hence classified accord
ing to the degree of nonanalyticity of the EoS at the tran
tion point. In this context, a phase transition appears as
intrinsic property of the system and not of the statistical
semble used to describe the equilibrium. Indeed, all the p
sible statistical ensembles are supposed to converge to
the same EoS and the various thermodynamical poten
are supposed to be related by simple Legendre transfo
tions leading to a unique thermodynamics. In most textbo
the equivalence between the different statistical ensembl
demonstrated at the thermodynamical limit through the V
Hove theorem@1#. On the other side for finite systems, it
known that two ensembles that put different constraints
the fluctuations of the order parameter lead to qualitativ
different EoS close to a first-order phase transition. As
example, when the variation of order parameter produce
change in the system energy, the microcanonical~at fixed
energy! heat capacity diverges to become negative while
canonical~at fixed temperature! one remains always positiv
and finite@2,3#. This major discrepancy can be of primordi
importance for mesoscopic systems undergoing a phase
sition as now studied in many fields of physics from Bo
condensates to the quark-gluon plasma. Moreover, such
equivalences may survive at the thermodynamical limit
systems involving long-range forces such as self-gravita
objects@4,5#. Looking at the general properties of the ord
parameter distribution a sufficient condition for this behav
to show up will be explicitly worked out.

Let us first concentrate on finite systems. For simplic
we will consider the microcanonical and the canonical
semble characterized by the energyE and the temperature
b21 respectively, but our discussion is valid for any coup
of conjugated extensive and intensive variables.

The microcanonical ensemble is characterized by
level densityW(E) and the entropyS5 lnW. The caloric
curve is thenT215]ES. The canonical partition sum is th
Laplace transform ofW: Zb5*W(E)exp(2bE)dE. In this
article, we will assume that the partition sum converges;
is not always the case as discussed in Ref.@6# and indeed the
impossibility to normalize the distributionWexp(2bE) is al-
ready a known case of ensemble inequivalence.
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In finite systems, the canonical ensemble differs from
microcanonical one since it does not correspond to a uni
energy but to a distributionPb(E)5exp@S(E)2bE2lnZb#. If
Pb has a single maximum the average energy^E&b5
2]blnZb can also be computed from the distributionPb .
Using a saddle point approximation around the most pr
able energyĒb we get

^E&b5E dEEe2(E2Ēb)2/2Cgb~E2Ē! ~1!

with gb(x)5c01c3x31c4x41 . . . . If Pb is symmetric,

^E&b5Ēb . The definition of saddle implies

T21[]ES~Ēb!5b ~2!

meaning that the microcanonical caloric curveT(Ē) exactly
coincides with the canonical oneb21(^E&). However, in a
finite system the distribution may not be symmetric so t
the two curves can be shifted :^E&b5Ēb1db , wheredb

5*dx xexp(2x2/2C)g̃b(x)53c3A2pC51 . . . with g̃b the
series of the odd terms ofgb . However, the shiftd is in most
cases small so that whenPb has a unique maximum th
ensembles are almost equivalent even for a finite system

A more interesting situation occurs in first-order pha
transitions wherePb has a characteristic bimodal shap
@7–9# with two maxima Ēb

(1) , Ēb
(2) that can be associate

with the two phases and a minimumĒ(0). These three solu-
tions of Eq.~2! imply a backbending for the microcanonic
caloric curve. A single saddle point approximation is n
valid in this case; however, it is always possible to wr
Pb5mb

(1)Pb
(1)1mb

(2)Pb
(2) with Pb

( i ) monomodal normalized

probability distribution peaked atĒb
( i ) . The canonical mean

energy is then the weighted average of the two energies

^E&b5m̃b
(1)Ēb

(1)1m̃b
(2)Ēb

(2) ~3!

with m̃b
( i )5mb

( i )*dEPb
( i )(E)E/Ēb

( i ).mb
( i ) , the last equality

holding for symmetric distributionsPb
( i ) . Since only one

mean energy is associated with a given temperatureb21, the
©2002 The American Physical Society08-1
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canonical caloric curve is monotonic, meaning that in
first-order phase transition region the two ensembles are
equivalent.

If instead of looking at the averagêE&b we look at the
most probable energyĒb , this ~unusual! canonical caloric
curve is identical to the microcanonical one@see Eq.~2!# up
to the transition temperatureb t

21 for which the two compo-
nents ofPb(E) have the same height. At this point the mo
probable energy jumps from the low- to the high-ener
branch of the microcanonical caloric curve. The most pr
able canonical energy is still a monotonic curve but it p
sents a plateau atb t

21 which is equivalent to the Maxwel
construction since

S~Ēb
(2)!2S~Ēb

(1)!5E
Ēb

(1)

Ēb
(2)dE

T
5b~Ēb

(2)2Ēb
(1)!. ~4!

Therefore, the difference between the canonical and
crocanonical caloric curves remains when one is looking
the most probable energy instead of the average.

The question arises whether this violation of ensem
equivalence survives towards the thermodynamical lim
This limit can be expressed as the fact that the thermo
namical potentials per particle converge when the numbe
particles N goes to infinity: f N,b5b21lnZb /N→ f̄b and
sN(e)5S(E)/N→ s̄(e) wheree5E/N. Let us also introduce
the reduced probabilitypN,b(e)5@Pb(N,E)#1/N which then
converges towards an asymptotic distributionpN,b(e)
→ p̄b(e) where p̄b(e)5exp@s̄(e)2be1 f̄b#. Since Pb(N,E)
'@ p̄b(e))N one can see that whenp̄b(e) is normal the rela-
tive energy fluctuation inPb(N,E) is suppressed by a facto
1/AN. At the thermodynamical limitPb reduces to a
d-function and the ensemble equivalence is recovered
analyze the thermodynamical limit of a first-order pha
transition@bimodalpN,b(e)#, let us introduce as beforebN,t

21

the temperature for which the two maxima ofpN,b(e) have
the same height. For a first-order phase transitionbN,t

21 con-

verges to a fixed pointb̄ t
21 as well as the two maximum

energieseN,b
( i ) →ēb

( i ) . For all temperatures lower~higher! than

b̄ t
21 only the low ~high! energy peak will survive at the

thermodynamical limit since the difference of the two ma
mum probabilities will be raised to the powerN. Therefore,
below ēb

(1) and aboveēb
(2) the canonical caloric curve coin

cides with the microcanonical one in the thermodynami
limit. In the canonical ensemble the temperatureb̄ t

21 corre-
sponds to a discontinuity in the state energy irrespectivel
the behavior of the entropy betweenēb

(1) and ēb
(2) .

The microcanonical caloric curve in the phase transit
region may either converge towards the Maxwell constr
tion or keep a backbending behavior, since a negative
capacity system can be thermodynamically stable even in
thermodynamical limit if it is isolated@10#. This point has
been recently made in somewhat different words by Leyv
and Ruffo@11#. Examples of a backbending behavior at t
thermodynamical limit have been reported for a mo
many-body interaction taken as a functional of the hyperg
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metric radius in Ref.@4# and for the long-range Ising mode
@5#. This can be understood as a general effect of long-ra
interactions for which the topological anomaly leading to t
convex intruder in the entropy is not cured by increasing
number of particles@5,12#. Conversely, for short-range inter
actions@3# the backbending is a surface effect which shou
disappear at the thermodynamical limit. This is the case
the microcanonical model of fragmentation of atomic clu
ters @13# and for the lattice gas model with fluctuating vo
ume @14# . The interphase surface entropy goes to zero
N→` in these models leading to a linear increase of
entropy in agreement with the canonical predictions. Fr
these examples, we can conclude that in the coexistenc
gion the microcanonical equation of states may remain
ferent from the canonical one even at the thermodynam
limit if the involved phenomena are not reduced to sho
range effects.

Even if many different examples have been reported
the literature, the general conditions for ensemble inequ
lence to show up stay up to now rather mysterious.

Within our approach based on the topology of the pro
ability distribution of observables@9# we have just shown
that ensemble inequivalence arises from fluctuations of
order parameter. Ensembles putting different constraints
the fluctuations of the order parameter lead to a differ
thermodynamics. In the case of phase transitions with a fi
latent heat, the total energy usually plays the role of an or
parameter except in the microcanonical ensemble wh
therefore, is expected to present a different thermodynam
than the other ensembles. This inequivalence may rema
the thermodynamical limit depending upon the specific pr
erties of the considered system. In particular, it may hap
that the energy of a subsystem becomes an order param
when the total energy is constrained by a conservation law
a microcanonical sorting. This frequently occurs for Ham
tonians containing a kinetic energy contribution: if the k
netic heat capacity is large enough we will now show that
kinetic energy becomes an order parameter in the micro
nonical ensemble. This is almost a paradox since in any
semble in which no energy conservation is imposed the
netic energy has a trivial perfect gas behavior, while in
microcanonical ensemble it becomes an order parameter
the specific bimodal structure at the phase transition. Th
the microcanonical caloric curve presents at the thermo
namical limit a temperature jump in complete disagreem
with the canonical ensemble.

Let us consider a finite system for which the Hamiltoni
can be separated into two componentsE5E11E2 , that are
statistically independent@W(E1 ,E2)5W1(E1)W2(E2)# and
such that the associated degrees of freedom scale in the
way with the number of particles; we will also consider t
case whereS15 lnW1 has no anomaly whileS25 lnW2 pre-
sents a convex intruder that is preserved at the thermo
namical limit. Typical examples ofE1 are given by the ki-
netic energy for a classical system with velocity independ
interactions or other similar one-body operators@5#.

The probability of getting a partial energyE1 when the
total energy isE is given by
8-2
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FAILURE OF THERMODYNAMICS NEAR A PHASE . . . PHYSICAL REVIEW E 66, 046108 ~2002!
PE~E1!5exp@S1~E1!1S2~E2E1!2S~E!#. ~5!

The extremum ofPE(E1) is obtained for the partitioning
of the total energyE between the kinetic and potential com
ponents that equalizes the two partial temperaturesT1̄

21

5]E1
S1(Ē1)5]E2

S2(E2Ē1)5T2̄
21. If Ē1 is unique,

PE(E1) is monomodal and we can use a saddle point
proximation around this solution to compute the entro
S(E)5 ln*2`

E dE1exp@S1(E1)1S2(E2E1)#. At the lowest order,
the entropy is simply additive so that the microcanoni
temperature of the global system]ES(E)5T̄21 is the one of
the most probable energy partition. Therefore, the most p
able partial energyĒ1 acts as a microcanonical thermomet
If Ē1 is always unique, the kinetic thermometer in the ba
bending region will follow the whole decrease of tempe
ture as the total energy increases. Therefore, the total ca
curve will present the same anomaly as the potential on

If conversely, the partial energy distribution is doub
humped@15#, then the equality of the partial temperatur
admits three solutions, one of themĒ1

(0) being a minimum.
At this point the partial heat capacitiesC1

215

2T̄2]E1

2 S1(Ē1
(0)) and C2

2152T̄2]E2

2 S2(E2Ē1
(0)) fulfill the

relation

C1
211C2

21,0. ~6!

This happens when the potential heat capacity is nega
and the kinetic energy is large enough (C1.2C2) to act as
an approximate heat bath: the partial energy distribut
PE(E1) in the microcanonical ensemble is then bimodal
the total energy distributionPb(E) in the canonical en-
semble implying that the kinetic energy is the order para
eter of the transition in the microcanonical ensemble. In t
case the microcanonical temperature is given by a weigh
average of the two estimations from the two maxima of
kinetic energy distribution

T5]ES~E!5
P̄(1)s (1)/T̄(1)1 P̄(2)s (2)/T̄(2)

P̄(1)s (1)1 P̄(2)s (2)
, ~7!

whereT̄( i )5T1(Ē1
( i )) are the kinetic temperatures calculat

at the two maxima,P̄( i )5PE(Ē1
( i )) are the probabilities of

the two peaks ands ( i ) their widths. At the thermodynamica
limit Eq. ~6! readsc1

211c2
21,0, with c5 lim

N→`
C/N. If

this condition is fulfilled the probability distributionPb(E)
presents two maxima for all finite sizes and only the high
peak survives atN5`. Let Et be the energy at which
PEt

(Ē(1))5PEt
(Ē(2)). Because of Eq.~7! at the thermody-

namical limit the caloric curve will follow the high~low!
energy maximum ofPE(E1) for all energies below~above!
Et ; there will be a temperature jump at the transition ene
Et .

Let us illustrate the above results with two examples fo
classical gas of interacting particles. For the kinetic ene
contribution we haveS1(E)5c1ln(E/N)N with a constant ki-
netic heat capacity per particlec153/2. For the potential par
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we will take two polynomial parametrizations of the intera
tion caloric curve presenting a backbending, which are d
played in the left part of Fig. 1 in units of an arbitrary sca
e. If the decrease of the partial temperatureT2(E2) is steeper
than 22/3 @Fig. 1~a!# @4# Eq. ~6! is verified and the kinetic
caloric curveT1(E2E1) ~dot-dashed line! crosses the poten
tial one T2(E2) ~full line! in three different points for all
values of the total energy lying inside the region of coexi
ence of two kinetic energy maxima. The resulting calo
curve for the whole system is shown in Fig. 1~b! ~symbols!
together with the thermodynamical limit~lines! evaluated
from the double saddle point approximation~7!. In this case
one observes a temperature jump at the transition energ
the temperature decrease is smoother@Fig. 1~c!# the shape of
the interaction caloric curve is preserved at the thermo
namical limit @Fig. 1~d!#.

The occurrence of a temperature jump in the thermo
namical limit is easily spotted by looking at the bidime
sional canonical event distributionPb(E1 ,E2) in the partial
energies plane. This canonical probability is nothing but
product of the independent kinetic and potential canon
probabilities as shown in the left part of Fig. 2 for the tw
model equation of states of Fig. 1 at the transition tempe
ture b5b t . In the canonical ensemble the potential ener
as well as the total energy, plays the role of an order par
eter while the kinetic energy distribution is normal. In ord
to discuss the microcanonical ensemble one has to introd
the total energyE5E11E2. KeepingE andE1 as variables
instead of (E1 ,E2) is nothing but a simple coordinate chang
with unit Jacobian. Thus we can look at the canonical dis
bution as a function of E and E1 , Pb(E,E1)
}expS1(E1)expS2(E2E1)exp(2bE) which is shown in the
right part of Fig. 2. The deformation of the event distributio
induced by the microcanonical constraint does not caus
topological difference between our two model cases; this
plains why both converge to the Maxwell construction f
N→` in the canonical ensemble. If we now study the m
crocanonical ensemble we have to look at constant ene

FIG. 1. Left panels: temperature as a function of the poten
energyE2 ~full lines! and of the kinetic energyE2E2 ~dot-dashed
lines! for two model equation of states of classical systems show
a first-order phase transition. Symbols: temperatures extracted
the most probable kinetic energy thermometer from Eq.~5!. Right
panels: total caloric curves~symbols! corresponding to the left pan
els and thermodynamical limit of Eq.~7! ~dashed lines!.
8-3
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cuts ofPb(E,E1) leading to the microcanonical distributio
PE(E1) within a normalization constant. If the anomaly
the potential equation of state is sufficiently important, t
distortion of events is such that one can still see the
phases coexist even after a sorting in energy as shown in
same Fig. 2 for two cuts ofPb(E,E1) at an energy close to
the transition energy.

In conclusion, in this paper we have analyzed the therm
dynamics of finite and infinite systems undergoing a fir
order phase transition using two statistical ensembles. In

FIG. 2. ~Color! Canonical event distributions in the potenti
versus kinetic energy plane~left panels! and total versus kinetic
energy plane~right panels! at the transition temperature for the tw
model equations of state of Fig. 1. The insets show two cons
total energy cuts of the distributions.
y
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extensive ~e.g., microcanonical! ensemble the events ar
sorted according to an observable quantity, the exten
variable,~e.g., energy! related to the order parameter whi
in the intensive~e.g., canonical! ensemble only the averag
value of the observable is constrained by means o
Lagrange parameter~e.g., the temperature!. In such a physi-
cal situation the two statistical ensembles are not in gen
equivalent. For a finite system in the canonical ensemble,
energy has an average value that varies smoothly while
most probable energy makes a jump when the heat bath
perature varies. In the microcanonical ensemble the micro
nonical temperature presents a backbending. In infinite s
tems, this nonequivalence between statistical ensembles
remain. We have shown that a generic behavior of the ex
sive ensemble can be a discontinuity in the associated in
sive variable. In particular, microcanonical caloric curv
present a sudden temperature fall at the transition energ
the negative heat capacity is sufficiently small in absol
value for the kinetic energy to play the role of a heat bath.
such a case the kinetic energy appears as a general
parameter specific of the microcanonical ensemble. Then
characteristics of the phase transition appear to be not on
system property but also depends upon the variable kept
stant to define the considered equilibrium. This affects b
finite systems under any interaction and infinite system w
long-range forces. From the experimental point of view, co
trary to the physical intuition based on macrosystems,
equations of state are expected to explicitly depend on
characteristic state variables of the considered ensemb
events, i.e., both the conserved quantities imposed by
dynamics and the sorting variables used in the data anal
This implies the impossibility to define a unique thermod
namics, i.e., a unique EoS, for systems undergoing a fi
order phase transition.
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