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Failure of thermodynamics near a phase transition
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In the vicinity of a first-order phase transition, the equation of state might be different when the extensive
variable is controlled instead of the intensive one, violating the uniqueness of thermodynamics. A sufficient
condition for this nonequivalence to survive at the thermodynamical limit is worked out for classical systems.

If energy consists of a kinetic and a potential part, the microcanonical ensemble does not converge towards the
canonical ensemble when the kinetic heat capacity is larger than the modulus of the negative interaction heat
capacity.

DOI: 10.1103/PhysRevE.66.046108 PACS nunid)er05.70.Fh, 05.20.Gg, 64.16h, 64.60—i

Phase transitions are universal properties of matter in in- In finite systems, the canonical ensemble differs from the
teraction. In macroscopic physics, they are anomalies in theicrocanonical one since it does not correspond to a unique
system equation of stat&oS and hence classified accord- energy but to a distributioR z(E) = ex{ S(E)— BE—InZ;]. If
ing to the degree of nonanalyticity of the EoS at the transiPs has a single maximum the average enexds);=
tion point. In this context, a phase transition appears as an dgInZz can also be computed from the distributié.
intrinsic property of the system and not of the statistical enlUsing a saddle point approximation around the most prob-
semble used to describe the equilibrium. Indeed, all the posable energfﬂ we get
sible statistical ensembles are supposed to converge toward
the same EoS and the various thermodynamical potentials = _
are supposed to be related by simple Legendre transforma- <E>B:f dEEe (F~F0)7%Cg (E-E) (1)
tions leading to a unique thermodynamics. In most textbooks
the equivalence between the different statistical ensembles \Iﬁ
demonstrated at the thermodynamical limit through the Val
Hove theoren{1]. On the other side for finite systems, it is
known that two ensembles that put different constraints on _
the fluctuations of the order parameter lead to qualitatively T '=0S(Ep) =P 2
different EoS close to a first-order phase transition. As an
example, when the variation of order parameter produces @geaning that the microcanonical caloric cuiVgE) exactly
change in the system energy, the microcanoniealfixed  coincides with the canonical ong *((E)). However, in a
energy heat capacity diverges to become negative while theinite system the distribution may not be symmetric so that
canom(_:al(at flxed_tempgratgpa)ne remains always positive e two curves can be shifted(E>B=EB + 84, where 8
and finite[2,3]. This major discrepancy can be of primordial PP B L~
importance for mesoscopic systems undergoing a phase traﬁ-f.dx Xexp(=x72C)gp(x) =3C3y27Co+ ... .W'.th 9p the
sition as now studied in many fields of physics from Bose €S of the odd terms gf; . However, the shiff is in most

condensates to the quark-gluon plasma. Moreover, such ifases small so that wheR; has a unique maximum the

equivalences may survive at the thermodynamical limit forensembles are alm_ost e.quw'alent even for a finite system.
A more interesting situation occurs in first-order phase

systems involving long-range forces such as self-gravitatin? . hereP . h h istic bimodal sh
objects[4,5]. Looking at the general properties of the order ransitions whereP; has a characteristic bimodal shape

parameter distribution a sufficient condition for this behavior[7—9] with two maximaE}’, Eff) that can be associated
to show up will be explicitly worked out. with the two phases and a minimuli®). These three solu-
Let us first concentrate on finite systems. For simplicitytions of Eq.(2) imply a backbending for the microcanonical
we will consider the microcanonical and the canonical encaloric curve. A single saddle point approximation is not
semble characterized by the enerf§yand the temperature valid in this case; however, it is always possible to write
B~ 1 respectively, but our discussion is valid for any couplePﬁ:m%l)ln(ﬁlbr mg)P(ﬁz) with Pg) monomodal normalized

of conjugated extensive and intensive variables. probability distribution peaked &'} . The canonical mean

The mir_:rocanonical ensemble is characterized b_y th%nergy is then the weighted average of the two energies
level densityW(E) and the entropyS=InW. The caloric

curve is thenT~1=¢¢S. The canonical partition sum is the
Laplace transform otV. Z,;= [W(E)exp(—BE)dE. In this
article, we will assume that the partition sum converges; this o ) ) ) )
is not always the case as discussed in Fgifand indeed the ~ with m§= m};)IdEPﬁé)(E)E/EE;)zmg)_, the last equality
impossibility to normalize the distributiow/exp(~SE) is al-  holding for symmetric distribution®®%) . Since only one
ready a known case of ensemble inequivalence. mean energy is associated with a given temperagure the

R ith gﬁ_(x)zco+c3x3+c4x4+ ... If Py is symmetric,
(E)s=Eg. The definition of saddle implies

(E)p=mPEY +mPER) (3)
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canonical caloric curve is monotonic, meaning that in themetric radius in Ref[4] and for the long-range Ising model
first-order phase transition region the two ensembles are n¢§]. This can be understood as a general effect of long-range
equivalent. interactions for which the topological anomaly leading to the

If instead of looking at the averagé); we look at the  convex intruder in the entropy is not cured by increasing the
most probable energf s, this (unusual canonical caloric  number of particle$5,12]. Conversely, for short-range inter-
curve is identical to the microcanonical ofsee Eq(2)] up  actions[3] the backbending is a surface effect which should
to the transition temperaturﬁ[1 for which the two compo- disappear at the thermodynamical limit. This is the case for
nents ofP 4z(E) have the same height. At this point the mostthe microcanonical model of fragmentation of atomic clus-
probable energy jumps from the low- to the high-energyters[13] and for the lattice gas model with fluctuating vol-
branch of the microcanonical caloric curve. The most probume [14] . The interphase surface entropy goes to zero as
able canonical energy is still a monotonic curve but it pre-N—o in these models leading to a linear increase of the
sents a plateau g8, * which is equivalent to the Maxwell entropy in agreement with the canonical predictions. From
construction since these examples, we can conclude that in the coexistence re-

gion the microcanonical equation of states may remain dif-

B(E(Z)_E(l))' 4) f_er_en_t from_the canonical one even at the thermodynamical

BTk limit if the involved phenomena are not reduced to short-
range effects.

Therefore, the difference between the canonical and mi- Even if many different examples have been reported in
crocanonical caloric curves remains when one is looking athe literature, the general conditions for ensemble inequiva-
the most probable energy instead of the average. lence to show up stay up to now rather mysterious.

The question arises whether this violation of ensemble Within our approach based on the topology of the prob-
equivalence survives towards the thermodynamical limitapility distribution of observablef9] we have just shown
This limit can be expressed as the fact that the thermodythat ensemble inequivalence arises from fluctuations of the
namical potentials per particle converge when the number ofrder parameter. Ensembles putting different constraints on
particles N goes to infinity: fNyﬁz,BflanB/N—ﬁ,8 and  the fluctuations of the order parameter lead to a different
sn(e) =S(E)/N—>§(e) wheree=E/N. Let us also introduce thermodynamics. In the case of phase transitions with a finite
the reduced probabilitpy z(€) =[P 4(N,E)]*N which then latent heat, the total energy usually plays the role of an order
converges towards an asymptotic distributiquy z(e) parameter except in the microcanonical ensemble which,
—pg(€) where py(e)=exgs(e)—Be+fgl. Since P4(N,E) therefore, is expected to present a different thermodynar_nics
%[pﬁ(e))N one can see that whasy(e) is normal the rela- than the other en_semt')le's. This |n.eqU|vaIence may remain at
tive energy fluctuation i 4(N,E) is suppressed by a factor the thermodynamical limit depending upon the specific prop-

1/yN. At the thermodynamical limitP; reduces to a erties of the considered system. In particular, it may happen

S-function and the ensemble equivalence is recovered. Tant the energy of a subsystem becomes an order parameter

analyze the thermodynamical limit of a first-order phasewhen the total energy is constrained by a conservation law or

transition[bimodal py 4(€)], let us introduce as beforﬁg} a microcanonical sorting. This frequently occurs for Hamil-

the temperature for which the two maxima g 4(€) have tonians containing a kinetic energy contribution: if the ki-
peratu whic W X BLE v netic heat capacity is large enough we will now show that the
the same height. For a first-order phase transm’gﬁ con-

— kinetic energy becomes an order parameter in the microca-
verges to a fixed poing, * as well as the two maximum nonical ensemble. This is almost a paradox since in any en-
energieseﬂ')ﬁ—ig). For all temperatures lowéghighep than ~ semble in which no energy conservation is imposed the ki-
E{l only the low (high) energy peak will survive at the ngtic energy has a trivial perfect gas behavior, while in thg
thermodynamical limit since the difference of the two maxi- microcanonical ensemble it becomes an order parameter with

mum probabilities will be raised to the powisr Therefore, the speciﬁc bim_odal structure at the phase transition. Then,
the microcanonical caloric curve presents at the thermody-

amical limit a temperature jump in complete disagreement
ith the canonical ensemble.

=2dE
E@\ _E@y_ | B 1=
S(ER))—S(E”) fBBl) =

below e} and aboveel?) the canonical caloric curve coin-
cides with the microcanonical one in the thermodynamical

limit. In the canonical ensemble the temperatgie" corre- Let us consider a finite system for which the Hamiltonian
sponds to a discontinuity in the state energy irrespectively ofan be separated into two componefts E, +E,, that are
the behavior of the entropy betweef}) andel?). statistically independerftW(E; ,E,) =W, (E;)W,(E,)] and

The microcanonical caloric curve in the phase transitionsuch that the associated degrees of freedom scale in the same
region may either converge towards the Maxwell construcway with the number of particles; we will also consider the
tion or keep a backbending behavior, since a negative heatse wheres, =InW,; has no anomaly whil&,=InW, pre-
capacity system can be thermodynamically stable even in theents a convex intruder that is preserved at the thermody-
thermodynamical limit if it is isolated10]. This point has namical limit. Typical examples of; are given by the ki-
been recently made in somewhat different words by Leyvranetic energy for a classical system with velocity independent
and Ruffo[11]. Examples of a backbending behavior at theinteractions or other similar one-body operat@$
thermodynamical limit have been reported for a model The probability of getting a partial enerdy; when the
many-body interaction taken as a functional of the hypergeototal energy isE is given by
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Pe(Eq) =exd S$i(Ey) +S(E—Eq) —S(E)]. ©) 8 :g ‘_b)I ' Ae @
The extremum oPg(E;) is obtained for the partitioning g 8| _ /1 / E 3 g
of the total energ)E between the kinetic and potential com- S 6 1 v 3 s &
ponents that equalizes the two partial temperatires® g o’ Ed ‘/ is :1;"_
=g, S1(E)) =0, SH(E~E)=T, % If E; is unique, £ 13 P o £
Pe(E;) is monomodal and we can use a saddle point ap- = 11 : ! d) | <
proximation around this solution to compute the entropy 18 ; E f'ég
S(E) =InSE, dE,exd Si(E;)+S(E—E,)]. At the lowest order, . o s
the entropy is simply additive so that the microcanonical 7k g ]
temperature of the global systetaS(E) =T ! is the one of 6k ST T /
the most probable energy partition. Therefore, the most prob- Energy @

able partial energ¥, acts as a microcanonical thermometer.

— . L . FIG. 1. Left panels: temperature as a function of the potential
If E, is always unique, the kinetic thermometer in the back-energyEz (full lines) and of the kinetic energ —E,, (dot-dashed

bending region will follow the whole decrease of tempera-jineg for two model equation of states of classical systems showing
ture as the total energy increases. Therefore, the total calorigfirst-order phase transition. Symbols: temperatures extracted from
curve will present the same anomaly as the potential one. the most probable kinetic energy thermometer from . Right

If conversely, the partial energy distribution is double panels: total caloric curvesymbols corresponding to the left pan-
humped[15], then the equality of the partial temperaturesels and thermodynamical limit of E47) (dashed lines
admits three solutions, one of the@io) being a minimum.
At this point the partial heat capacitiesC; 1=

~T?52 SI(EY) and C; '= ~T20¢ S,(E—~EL) fulfill the
relation

we will take two polynomial parametrizations of the interac-
tion caloric curve presenting a backbending, which are dis-
played in the left part of Fig. 1 in units of an arbitrary scale
e. If the decrease of the partial temperatlii€E,) is steeper
than —2/3 [Fig. 1(a)] [4] Eq. (6) is verified and the kinetic
caloric curveT,(E—E;) (dot-dashed linecrosses the poten-
Jhal one T,(Ej) (full line) in three different points for all

Cc;'+Cy'<o. (6)

This happens when the potential heat capacity is negati U ; ,
and the Kinetic energy is large enoug,( — C,) to act as values of the total energy lying inside the region of coexist-

an approximate heat bath: the partial energy distributiorf "€ of two kinetic energy maxima. The resulting caloric

P&(E,) in the microcanonical ensemble is then bimodal ascUrVe for the whole system is shown in Figbl (symbols

the total energy distributiorP,(E) in the canonical en- together with the thermodynamical limitines) evaluated

semble implying that the kinetic energy is the order param-from the double saddle point _approxmatl()?). n Fh's case
one observes a temperature jump at the transition energy. If

eter of the transition in the microcanonical ensemble. In thi ¢ wre d . iy, 1(c)] the sh f
case the microcanonical temperature is given by a weightesﬁj‘e emperature decrease Is s_moo[lliaxy. ¢)] the snape o
e interaction caloric curve is preserved at the thermody-

average of the two estimations from the two maxima of the

Lo S namical limit[Fig. 1(d)].
kinetic energy distribution The occurrence of a temperature jump in the thermody-

namical limit is easily spotted by looking at the bidimen-
sional canonical event distributidd,;(E4,E;) in the partial
energies plane. This canonical probability is nothing but the
— 4 product of the independent kinetic and potential canonical
WhefeT('):Tl(E(ll))_afe the kinetic temperatures calculated probabilities as shown in the left part of Fig. 2 for the two
at the two maximaPV=P¢(E{") are the probabilities of model equation of states of Fig. 1 at the transition tempera-
the two peaks and(" their widths. At the thermodynamical ture 8= ;. In the canonical ensemble the potential energy,
limit Eq. (6) readscl’1+cgl<0, with c:|imecc/N, If as well as the total energy, plays the role of an order param-

. o . e eter while the kinetic energy distribution is normal. In order
:)hrlessg(r)]?sdlts:/)on r:a]:(lfmge% rtg?l ﬁ;ci)tzasbiggi gﬁé”grl#}l/otﬁg(ﬁ)ghesto discuss the microcanonical ensemble one has to introduce

peak survives aN=c. Let E, be the energy at which he total energ\fe=E; +E,. KeepingE andE as variables

=10) —12) instead of E4,E>) is nothing but a simple coordinate change
Pe(E™)=Pg (E™). Because of Eq(7) at the thermody- yith unit Jacobian. Thus we can look at the canonical distri-
namical limit the caloric curve will follow the highilow)

buton as a function of E and E;, Pg(EE,)

energy maximum oPg(E;) for all energies belowabove  o«expS,(E;)expS,(E—E;)exp(—BE) which is shown in the
E;; there will be a temperature jump at the transition energyright part of Fig. 2. The deformation of the event distribution
E;. induced by the microcanonical constraint does not cause a

Let us illustrate the above results with two examples for aopological difference between our two model cases; this ex-
classical gas of interacting particles. For the kinetic energylains why both converge to the Maxwell construction for
contribution we haves, (E) =c,In(E/N)N with a constant ki- N-—c in the canonical ensemble. If we now study the mi-
netic heat capacity per partiobg=3/2. For the potential part crocanonical ensemble we have to look at constant energy

P TM 4 pR)2)T(2)
P04 P2y @

T=0eS(E)= , (@)
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a325 25 o3 extensive (e.g., microcanonical ensemble the events are
o E o l:_, sorted according to an observable quantity, the extensive
20 F 20 . :
: variable, (e.g., energyrelated to the order parameter while
15 | 115 in the intensive(e.g., canonicalensemble only the average
1w E ; A 10 value of the observable is constrained by means of a
: on|gl £ Lagrange parametée.g., the temperatureln such a physi-
B .".] ?_LIU{: X a cal situation the two statistical ensembles are not in general
3 9n T 5 equivalent. For a finite system in the canonical ensemble, the
o Sl energy has an average value that varies smoothly while the
2o s H2otd most probable energy makes a jump when the heat bath tem-
5 145 perature varies. In the microcanonical ensemble the microca-
A nonical temperature presents a backbending. In infinite sys-
L | g 7 1o tems, this nonequivalence between statistical ensembles may
5 ) £ o\ 2 remain. We have shown that a generic behavior of the exten-
5 b | : ml — g sive ensemble can be a discontinuity in the associated inten-
0 10 20 0 10 20 sive variable. In particular, microcanonical caloric curves
E,® E,® present a sudden temperature fall at the transition energy if

the negative heat capacity is sufficiently small in absolute
FIG. 2. (Color) Canonical event distributions in the potential value for the kinetic energy to play the role of a heat bath. In
versus kinetic energy plan@eft panel$ and total versus kinetic such a case the kinetic energy appears as a general order
energy plandright panel$ at the transition temperature for the two parameter specific of the microcanonical ensemble. Then the
model equations of state of Fig. 1. The insets show two constan¢haracteristics of the phase transition appear to be not only a
total energy cuts of the distributions. system property but also depends upon the variable kept con-
stant to define the considered equilibrium. This affects both
cuts of P4(E,E,) leading to the microcanonical distribution finite systems under any interaction and infinite system with
P:(E;) within a normalization constant. If the anomaly in long-range forces. From the experimental point of view, con-
the potential equation of state is sufficiently important, thetrary to the physical intuition based on macrosystems, the
distortion of events is such that one can still see the twaequations of state are expected to explicitly depend on the
phases coexist even after a sorting in energy as shown in theharacteristic state variables of the considered ensemble of
same Fig. 2 for two cuts dP4(E,E;) at an energy close to events, i.e., both the conserved quantities imposed by the
the transition energy. dynamics and the sorting variables used in the data analysis.
In conclusion, in this paper we have analyzed the thermoThis implies the impossibility to define a unique thermody-
dynamics of finite and infinite systems undergoing a first-namics, i.e., a unique EoS, for systems undergoing a first-
order phase transition using two statistical ensembles. In therder phase transition.
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